Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato.

نویسندگان

  • Mohamed El Oirdi
  • Taha Abd El Rahman
  • Luciano Rigano
  • Abdelbasset El Hadrami
  • María Cecilia Rodriguez
  • Fouad Daayf
  • Adrian Vojnov
  • Kamal Bouarab
چکیده

Plants have evolved sophisticated mechanisms to sense and respond to pathogen attacks. Resistance against necrotrophic pathogens generally requires the activation of the jasmonic acid (JA) signaling pathway, whereas the salicylic acid (SA) signaling pathway is mainly activated against biotrophic pathogens. SA can antagonize JA signaling and vice versa. Here, we report that the necrotrophic pathogen Botrytis cinerea exploits this antagonism as a strategy to cause disease development. We show that B. cinerea produces an exopolysaccharide, which acts as an elicitor of the SA pathway. In turn, the SA pathway antagonizes the JA signaling pathway, thereby allowing the fungus to develop its disease in tomato (Solanum lycopersicum). SA-promoted disease development occurs through Nonexpressed Pathogen Related1. We also show that the JA signaling pathway required for tomato resistance against B. cinerea is mediated by the systemin elicitor. These data highlight a new strategy used by B. cinerea to overcome the plant's defense system and to spread within the host.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest

Tomato is one of the most important vegetables in the world. Decay after harvest is a major issue in the development of tomato industry. Currently, the most effective method for controlling decay after harvest is storage of tomato at low temperature combined with usage of chemical bactericide; however, long-term usage of chemical bactericide not only causes pathogen resistance but also is harmf...

متن کامل

Antagonistic effects of Bacillus cereus strain B-02 on morphology, ultrastructure and cytophysiology of Botrytis cinerea.

The study on antagonistic mechanism of biocontrol strains gives the premise and basis for efficient and stable biological control. This study aimes to overcome of biocontrol agent in aspects of complicated and diversified mode of action, short-lasting and unstable efficacy in the production processes. This study elucidated the antagonistic mechanism of Bacillus cereus strain B-02 on Botrytis ci...

متن کامل

Expression of Vitis amurensis VaERF20 in Arabidopsis thaliana Improves Resistance to Botrytis cinerea and Pseudomonas syringae pv. Tomato DC3000

Ethylene response factor (ERF) transcription factors play important roles in regulating immune responses in plants. In our study, we characterized a member of the ERF transcription factor family, VaERF20, from the Chinese wild Vitis genotype, V. amurensis Rupr "Shuangyou". Phylogenetic analysis indicated that VaERF20 belongs to group IXc of the ERF family, in which many members are known to con...

متن کامل

Analysis of Clonostachys rosea-Induced Resistance to Tomato Gray Mold Disease in Tomato Leaves

Tomato gray mold disease, caused by Botrytis cinerea, is a serious disease in tomato. Clonostachys rosea is an antagonistic microorganism to B. cinerea. To investigate the induced resistance mechanism of C. rosea, we examined the effects of these microorganisms on tomato leaves, along with changes in the activities of three defense enzymes (PAL, PPO, GST), second messengers (NO, H2O2, O2(-)) an...

متن کامل

Streptomyces nobilis C51 Suppresses Gray Mold Caused by Botrytis cinerea in Tomato

This study sought to develop a biological control agent against gray mold disease caused by Botrytis cinerea in tomato using a strain of Streptomyces, which showed significant antagonistic activity against B. cinerea. Such strain (C51) was screened by dual culture method from a total of 78 actinomycetes and was identified as Streptomyces nobilis by morphological, biochemical and molecular analy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 23 6  شماره 

صفحات  -

تاریخ انتشار 2011